超细粉末涂料在汽车涂装领域的应用研究
超细粉末涂料在汽车涂装领域的应用研究
张海萍1、闫宝伟1、杨帅2、Krantz Matthew2
邵媛媛1、张辉1.2、祝京旭1.2
天津化学化工协同创新中心
加拿大西安大略大学化学与生物化学工程系
摘要
:
介绍了超细粉末涂料及其在汽车涂装领域的应用和发展。针对其在汽车涂装生产线上的流动性问题,介绍了一种新型的流化助剂技术,并通过改性后车用粉末涂料与商业粉末涂料多方面性能的对比,验证了该技术在汽车涂装领域应用的可行性。同时综述了低温固化超细粉末涂料技术及其在汽车塑料件涂装上的应用。
随着粉末涂料技术的持续发展,其在汽车领域的应用也在不断拓展。近年来,粉末涂料已广泛用于发动机罩和车身零部件的涂装。但由于其涂层较厚、外观平整度较差,粉末涂料还没有被大量应用于对外观要求较高的汽车外部涂装。为节约成本及提高涂膜质量,粉末涂料制造厂商不断减小粉末涂料粒径,以改善粉末涂膜的平整度。但粒径减小的同时也导致粉末涂料流动性变差,严重影响使用。因此需要一种新技术来改善超细粉末的流动特性,例如采用纳米尺寸的添加剂作为间隔物(流化助剂),以实现超细粉末涂料在现有喷涂设备上的使用。另外,越来越多的热敏塑料或复合材料部件应用于汽车行业中,低温固化粉末涂料,特别是低温固化超细粉末涂料的开发也受到更广泛的关注。据此,本文首先综述了超细粉末涂料在汽车涂装领域的发展和挑战,同时通过考察添加流化助剂后超细粉末涂料的流动性能及涂膜性能,探究了新型的流化助剂技术在车用超细粉末涂料领域的可行性,最后介绍了低温固化超细粉末涂料及其在汽车塑料件上的应用。
1 超细粉末涂料在汽车涂装领域的应用
1.1 超细粉末涂料
超细粉末涂料通常指中粒径D50小于25μm的粉末涂料。与普通粉末涂料(中粒径D50大于30μm)及细粉末涂料(中粒径D50介于25~30μm)相比,超细粉末涂料具有独特的优异性能。随着颗粒粒径的减小,涂膜厚度也随之减小,从而使涂膜具有更好的流平性和良好的装饰效果。此外,由于用料的减少,经济成本也随之下降。根据Geldart粉末分类,普通粉末涂料属于A类颗粒,容易流化,但是当粒径减小到超细粉末涂料(C类颗粒)时,颗粒之间的作用力(范德华力)增大,粉末颗粒易发生团聚,无法正常流化,从而引起气流输送以及喷涂困难等一系列问题。
为了提高超细粉末涂料的流动性,须在涂料中加入适量的流化助剂(客体颗粒),这些纳米级的颗粒以小聚团的形式粘附于超细粉颗粒(主体颗粒)表面,增大颗粒之间的距离。由于这些加入的客体颗粒与超细粉颗粒相比,堆积密度或表观颗粒密度更低、尺寸更小,粘附的客体颗粒与主体颗粒之间的颗粒间作用力显著小于主体颗粒之间的颗粒间作用力,从而降低了超细粉末颗粒间的范德华力。为促使主体颗粒发生解聚,流化助剂颗粒通常需要均匀地分散在超细粉中,且均匀地附着在超细粉末颗粒表面,但不需要以单颗粒的形式附着,小聚团的形式对减小主体颗粒间作用力更有帮助。
添加剂可以显著提高超细粉末涂料的流动性,但同时也会引起其他问题,比如造成涂膜表面光泽降低和产生如缩孔和“粒子”等涂膜缺陷。另外,纳米尺寸的添加剂本身容易发生内聚现象,并且倾向于形成坚固且较大的团聚体,无法通过普通的干混过程(即使是使用高剪切混合器)分散,以至于最终涂层中出现“粒子”等难以避免的缺陷。要克服这些问题,需要采用新的技术包括专门设计的添加剂配方和特殊的混合工艺来提高添加剂的分散性以及与粉末涂料的相容性,确保在降低颗粒之间作用力、改善流动性的同时,还能保持优良的涂膜性质。加拿大西安大略大学颗粒技术研究中心成功研制出一种高效超细(HEUF)粉末涂料技术,该技术根据涂料的各种树脂体系采用相应的流化助剂配方以及优化的加入和分散方法,保证了超细粉末涂料优异的流动性、可喷涂性和涂膜质量,其最低涂膜膜厚仅为20~30μm(如表1)。图1为平均粒径16.4μm超细粉末涂料和38.8μm的普通粉末涂料喷涂所得的涂层表面轮廓(采用Dektak接触式表面轮廓仪测得),横坐标为测样长度,纵坐标表示在垂直于涂层方向上被测轮廓上各点到基准线的距离。纵坐标数值波动越大,说明涂层表面越粗糙。
从表1和图1中可以看出,与普通粉末涂料相比,高效超细HEUF粉末涂料明显降低了涂膜的表面粗糙度,改善了涂膜的视觉效果。涂膜厚度的降低使成本大幅度下降,而且涂膜同时具有与普通粉末涂料相同的耐久性、可回收性和上粉率。
1.2 超细粉末涂料在汽车领域的应用概况
随着亚太地区高端汽车需求的快速增长,以及中国环....
该文章只显示3分之一,如想阅读到这篇文章的完整内容,请扫描下方二维码,打开我们的万水化工商城小程序,在首页“知识中心”栏目搜索文章标题继续进行阅读。万水化工商城收集100万+篇精细化工知识文章,旨在为您深入的了解行业知识和化工应用技巧。