碳化硅为什么是第三代半导体最重要的材料?
一、碳化硅的前世今生
碳化硅由于化学性能稳定、导热系数高、热膨胀系数小、耐磨性能好,除作磨料用外,还有很多其他用途,例如:以特殊工艺把碳化硅粉末涂布于水轮机叶轮或汽缸体的内壁,可提高其耐磨性而延长使用寿命1~2倍;用以制成的高级耐火材料,耐热震、体积小、重量轻而强度高,节能效果好。低品级碳化硅(含SiC约85%)是极好的脱氧剂,用它可加快炼钢速度,并便于控制化学成分,提高钢的质量。此外,碳化硅还大量用于制作电热元件硅碳棒。
碳化硅的硬度很大,莫氏硬度为9.5级,仅次于世界上最硬的金刚石(10级),具有优良的导热性能,是一种半导体,高温时能抗氧化。
碳化硅历程表
1905年第一次在陨石中发现碳化硅
1907年第一只碳化硅晶体发光二极管诞生
1955年理论和技术上重大突破,LELY提出生长高品质碳化概念,从此将SiC作为重要的电子材料
1958年在波士顿召开第一次世界碳化硅会议进行学术交流
1978年六、七十年代碳化硅主要由前苏联进行研究。到1978年首次采用“LELY改进技术”的晶粒提纯生长方法
1987年~至今以CREE的研究成果建立碳化硅生产线,供应商开始提供商品化的碳化硅基。
2001年德国Infineon公司推出SiC二极管产品,美国Cree和意法半导体等厂商也紧随其后推出了SiC二极管产品。在日本,罗姆、新日本无线及瑞萨电子等投产了SiC二极管。
2013年9月29日,碳化硅半导体国际学会“ICSCRM2013”召开,24个国家的半导体企业、科研院校等136家单位与会,人数达到794人次,为历年来之最。国际知名的半导体器件厂商,如科锐、三菱、罗姆、英飞凌、飞兆等在会议上均展示出了最新量产化的碳化硅器件。
到现在已经有很多厂商生产碳化硅器件比如Cree公司、Microsemi公司、Infineon公司、Rohm公司。
二、碳化硅器件的优势特性
碳化硅(SiC)是目前发展最成熟的宽禁带半导体材料,世界各国对SiC的研究非常重视,纷纷投入大量的人力物力积极发展,美国、欧洲、日本等不仅从国家层面上制定了相应的研究规划,而且一些国际电子业巨头也都投入巨资发展碳化硅半导体器件。
与普通硅相比,采用碳化硅的元器件有如下特性:
1、高压特性
碳化硅器件是同等硅器件耐压的10倍,碳化硅肖特基管耐压可达2400V。碳化硅场效应管耐压可达数万伏,且通态电阻并不很大。
2、高频特性
3、高温特性
在Si材料已经接近理论性能极限的今天,SiC功率器件因其高耐压、低损耗、高效率等特性,一直被视为“理想器件”而备受期待。然而,相对于以往的Si材质器件,SiC功率器件在性能与成本间的平衡以及其对高工艺的需求,将成为SiC功率器件能否真正普及的关键。
目前,低功耗的碳化硅器件已经从实验室进入了实用器件生产阶段。目前碳化硅圆片的价格还较高,其缺陷也多。
三、最受关注的碳化硅MOS
1、SiC-MOSFET
SiC-MOSFET是碳化硅电力电子器件研究中最受关注的器件。成果比较突出的就是美国的Cree公司和日本的ROHM公司。
碳化硅MOS的结构碳化硅MOSFET(SiCMOSFET)N+源区和P井掺杂都是采用离子注入的方式,在1700℃温度中进行退火激活。另一个关键的工艺是碳化硅MOS栅氧化物的形成。由于碳化硅材料中同时有Si和C两种原子存在,需要非常特殊的栅介质生长方法。其沟槽星结构的优势如下:
平面vs沟槽
碳化硅MOS的优势
硅IGBT在一般情况下只能工作在20kHz以下的频率。由于受到材料的限制,高压高频的硅器件无法实现。碳化硅MOSFE金属氧化物颜料T不仅适合于从600V到10kV的广泛电压范围,同时具备单极型器件的卓越开关性能。相比于硅IGBT,碳化硅MOSFET在开关电路中不存在电流拖尾的情况具有更低的开关损耗和更高的工作频率。
20kHz的碳化硅MOSFET模块的损耗可以比3kHz的硅IGBT模块低一半,50A的碳化硅模块就可以替换150A的硅模块。显示了碳化硅MOSFET在工作频率和效率上的巨大优势。
碳化硅MOSFET寄生体二极管具有极小的反向恢复时间trr和反向恢复电荷Qrr。如图所示,同一额定电流900V的器件,碳化硅MOSFET寄生二极管反向电荷只有同等电压规格硅基MOSFET的5%。对于桥式电路来说(特别当LLC变换器工作在高于谐振频率的时候),这个指标非常关键,它可以减小死区时间以及体二极管的反向恢复带来的损耗和噪音,便于提高开关工作频率。
碳化硅MOS管的应用
碳化硅MOSFET模块在光伏、风电、电动汽车及轨道交通等中高功率电力系统应用上具有巨大的优势。碳化硅器件的高压高频和高效率的优势,可以突破现有电动汽车电机设计上因器件性能而受到的限制,这是目前国内外电动汽车电机领域研发的重点。如电装和丰田合作开发的混合电动汽车(HEV)、纯电动汽车(EV)内功率控制单元(PCU),使用碳化硅MOSFET模块,体积比减小到1/5。三菱开发的EV马达驱动系统,使用SiCMOSFET模块,功率驱动模块集成到了电机内,实现了一体化和小型化目标。预计在2018年-2020年碳化硅MOSFET模块将广泛应用在国内外的电动汽车上。
四、碳化硅肖特二极管
1、碳化硅肖特基二极管结构
碳化硅肖特基二极管(SiCSBD)的器件采用了结势垒肖特基二极管结构(JBS),可以有效降低反向漏电流,具备更好的耐高压能力。
2、碳化硅肖特基二极管优势
碳化硅肖特基二极管是一种单极型器件,因此相比于传统的硅快恢复二极管(SiFRD),碳化硅肖特基二极管具有理想的反向恢复特性。在器件从正向导通向反向阻断转换时,几乎没有反向恢复电流(如图1.2a),反向恢复时间小于20ns,甚至600V10A的碳化硅肖特基二极管的反向恢复时间在10ns以内。因此碳化硅肖特基二极管可以工作在更高的频率,在相同频率下具有更高的效率。另一个重要的特点是碳化硅肖特基二极管具有正的温度系数,随着温度的上升电阻也逐渐上升,这与硅FRD正好相反。这使得碳化硅肖特基二极管非常适合并联实用,增加了系统的安全性和可靠性。
概括碳化硅肖特基二极管的主要优势,有如下特点:
1.几乎无开关损耗
2.更高的开关频率
3.更高的效率
4.更高的工作温度
5.正的温度系数,适合于并联工作
6.开关特性几乎与温度无关
碳化硅肖特基二极管的应用
碳化硅肖特基二极管可广泛应用于开关电源、功率因素校正(PFC)电路、不间断电源(UPS)、光伏逆变器等中高功率领域,可显著的减少电路的损耗,提高电路的工作频率。在PFC电路中用碳化硅SBD取代原来的硅FRD,可使电路工作在300kHz以上,效率基本保持不变,而相比下使用硅FRD的电路在100kHz以上的效率急剧下降。随着工作频率的提高,电感等无源原件的体积相应下降,整个电路板的体积下降30%以上....
该文章只显示3分之一,如想阅读到这篇文章的完整内容,请扫描下方二维码,打开我们的万水化工商城小程序,在首页“知识中心”栏目搜索文章标题继续进行阅读。万水化工商城收集100万+篇精细化工知识文章,旨在为您深入的了解行业知识和化工应用技巧。