耐疲劳橡胶配方设计要点
一.概述
橡胶材料的疲劳性能可定义为在周期性变形或外力作用下(如弯曲、剪切、压缩和拉伸等) ,其物理机械性能下降的现象。疲劳破坏是指在低于材料破坏强度下,橡胶因受周期性应力或应变,其表面或内部产生微观损伤,并逐渐发展成宏观裂纹直至制品丧失使用性能的现象。在日常工作条件下,大多数橡胶制品都是在动态变形条件下使用的,研究并寻找橡胶材料耐疲劳破坏性的规律,对保证橡胶制品的使用可靠性具有重要意义。
高分子弹性材料宏观上可视为均质,但其内部必然具有分布于各处的不同形状和大小的缺陷,如杂质、气泡和弱键等。当材料整体受力时,位于缺陷端部的材料局部应力可能增大到平均应力的许多倍。疲劳破坏严格地说是一个力学和化学的综合过程。橡胶在往复形变下,材料中产生的应力松弛在形变周期内来不及完成,结果内部产生的应力不能均匀地分散,便可能集中在某些缺陷处(如裂纹、弱键等),形成裂纹,从而引起疲劳破坏。此外由于橡胶是一种粘弹体,它的形变包括可逆形变和不可逆形变,在周期形变中不可逆形变产生的滞后损失,转化为热,使材料内部温度升高,高温促进了橡胶的老化,亦促进了橡胶的疲劳破坏过程。总之,橡胶的疲劳不单纯是力学疲劳破坏,往往伴随有热疲劳破坏。
唯象论认为,材料破坏是由于其内部损伤(缺陷和微裂纹)引发的裂纹不断传播和扩展而导致的。其传播方式和扩展速度由材料的粘弹性决定,表现出强烈的时间-温度效应。按分子论观点,动态疲劳归因于化学键断裂,即试样在周期形变过程中,应力不断集中于“弱健”处而诱发微裂纹,由此产生裂纹并随时间扩展。由于裂纹尖端处的分子链处于高应力场中,分子链拉长,当应力达到键的强度时发生键断裂,并随时间而扩展。疲劳裂纹增长是机械和化学破坏积累时产生的。应变时,橡胶网链取向排列,橡胶网络弱交联点间的链长有一个分布范围,发生形变时,链呈直线状,并因网络结构不均质而造成承载不均,网络结构力求使应力分布在链中间。当应力达到链的强度时,最终会是一个网链断开,从而使该链断开前所承受的力迅速分配到相邻链上,导致这些链中的部分链过载而断开。此时分子链虽已断开,但还未发生宏观破坏。断链不是随机的而是最易在首次断链的地方断裂。随时间的增加,会有某一部分比其他部分发生更多的断链,宏观裂纹就从这儿开始。而断裂链的弹性能以热的形式散发掉,裂纹发展是一个非平衡过程的断裂现象,包括分子链随时间连续不可逆断裂,以及裂纹尖端处和其附近与分子运动相关联的塑性变形所产生的不可逆能量损失。这一微观过程的宏观表现便是动态疲劳过程中裂纹穿过试样不断扩展直至断裂和所伴随的热效应。
通过观察与分析,动态疲劳过程大致分为三个阶段:第一....
该文章只显示3分之一,如想阅读到这篇文章的完整内容,请扫描下方二维码,打开我们的万水化工商城小程序,在首页“知识中心”栏目搜索文章标题继续进行阅读。万水化工商城收集100万+篇精细化工知识文章,旨在为您深入的了解行业知识和化工应用技巧。