填料与补强
强度:材料抵抗变形或破坏的能力,即材料所能承受的最大载荷,表征了材料的受力极限
玻璃钢:以玻璃纤维及其制品玻璃布、玻璃带、等为增强材料,以树脂为粘结剂,经一定的成型工艺制作而成的一种功能型的新型复合材料。
吸留橡胶指未硫化混炼胶在填料(炭黑)中能被良溶剂溶解的那部分像胶
结合橡胶也称为炭黑凝胶,是指炭黑混炼胶中不能被橡胶的良溶剂溶解的那部分橡胶。
硫化:线性的高分子在物理或化学作用下,形成三维网状体型结构的过程。实际上就是把塑性的胶料转变成具有高弹性橡胶的过程。
结构化效应:硅橡胶与白炭黑的混炼胶随存放时间的延长会出现粘度上升,硬度增加,以致无法返炼的现象。
离聚物或称离聚体是指含有少量离子基团的聚合物。
并用:将两种或两种以上的不同橡胶或橡胶与合成树脂,借助机械力的作用搀混成一体,用以制造各种橡胶制品,称为橡胶机械共混或橡胶的并用
聚合物的相容性:指两种不同聚台物在外力作用下的混合,移去外力后仍能彼此相互容纳并保持宏观均相形态的能力。
工艺相容性: 这种共混物在微观区域内分成了两个相,构成多相形态,但在宏观上仍能保持其均匀性。
韧性是指材料破坏前吸收外加能量的能力。
冲击破坏是材料在高速冲击下的断裂现象.
冲击强度是标准试样在冲击断裂时单位面积上所消耗的能量或断裂时单位切口所消耗的能量,是度量材料在高速冲击下的韧性大小和抵抗断裂能力的参数。
复合材料的界面是指基体相与增强相之间化学成分有显著变化的、构成彼此结合的、能起载荷传递作用的微小区域。
复合材料,是指由两种或两种以上不同性质的材料,通过一定的工艺方法人工合成的,各组分间有明显界面且性能优于各组成材料的多相材料。
影响高分子材料强度的因素
1.高分子本身结构
1.1 分子链结构的影响
1)主链结构 ,高分子链刚性增加,聚合物强度增加,韧性下降,像主链含有芳杂环结构的聚合物其强度和模量比脂肪族主链高。主链上含有大的侧基,刚性大。2)链节极性,链节含有强极性基团或氢键的基团使得分子间作用力增大,强度提高3)空间立构:结构规整和等规度高的聚合物因结晶而强度提高。4)支化:支化破坏了链的规整性结晶度降低,还增加了分子间的距离分子间力减小,都使强度降低。但是韧性有所提高。
1.2 交联的影响
交联一方面可以提高材料的抗蠕变能力,另一方面也能提高断裂强度。一般认为,对于玻璃态聚合物,交联对脆性强度的影响不大;但对高弹态材料的强度影响很大。随交联程度提高,橡胶材料的拉伸模量和强度都大大提高,达到极值强度后,又趋于下降(结晶取向下降);断裂伸长
1.3 分子量及其分布的影响:分子量是对高分子材料力学性能(包括强度、弹性、韧性)起决定性作用的结构参数。低分子有机化合物一般没有力学强度(多为液体),高分子材料要获得强度,必须具有一定聚合度,使分子间作用力足够大才行。
2.结晶与取向
2.1 结晶的影响:结晶对高分子材料力学性能的影响也十分显著,主要影响因素有结晶度、晶粒尺寸和晶体结构。1)结晶度:随着结晶度上升,材料的屈服强度、断裂强度、硬度、弹性模量均提高,但断裂伸长率和韧性下降。这是由于结晶使分子链排列紧密有序,孔隙率低,分子间作用增强所致2)晶体尺寸:小球晶:强度、伸长率、模量和韧性得到提高,大球晶:断裂伸长和韧性下降,冲击强度下降3)结晶形态:同一类聚合物,伸直链强度最大,串晶次之,球晶最小。
2.2 取向的影响:加工过程中分子链沿一定方向取向,使材料力学性能产生各向异性,在取向方向得到增强。对于脆性材料,取向使材料在平行于取向方向的强度、模量和伸长率提高,甚至出现脆-韧转变,而在垂直于取向方向的强度和伸长率降低。对于延性、易结晶材料,在平行于取向方向的强度、模量提高,在垂直于取向方向的强度下降,伸长率增大。对纤维和薄膜,取向是提高性能必不可少的措施。原因:取向后分子沿外力的方向有序排列,断裂时主价键比例增大,而使聚合物强度提高。
3.应力集中物如果材料内部存在缺陷,受力时材料内部的应力平均分布状态将发生变化,使缺陷附近局部范围内 的应力急剧的增加,远远超过应力平均值,这种现象称为应力集中。
4.增塑剂:抗张强度降低,冲击性能提高。原因:能够同聚合物相容的小分子,是使分子链之间的相互作用减弱,分子链活动性增加。从而使材料的拉伸强度下降,冲击强度升高。
5.填料除增强材料本身应具有较高力学强度外,增强材料的均匀分散、取向以及增强材料与聚合物基体的良好界面亲和也是提高增强改性效果的重要措施。粉状填料的增强效果主要取....
该文章只显示3分之一,如想阅读到这篇文章的完整内容,请扫描下方二维码,打开我们的万水化工商城小程序,在首页“知识中心”栏目搜索文章标题继续进行阅读。万水化工商城收集100万+篇精细化工知识文章,旨在为您深入的了解行业知识和化工应用技巧。